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Abstract

in this paper, wc investigate the statistical behavior of nonlincar systems near stable
equilibria in the presence of additive white noise. In the case of certain carrier syn-
chronization loops, such as those that track a combination of suppressed and residual
carrier modulations or QAM modulation, it is known that the phase in the steady-
state may lock at onc of severa possible states, which in general are not equiprobable.
To investigate the behavior of such nonlincar stochastic systems in a neighborhood
of a stable equilibrium point, wc consider a random realization of the state near an
equilibrium point (in the form of a stochastic observation equation) and wc anayze
the corresponding Zakai equation, whose solution is the probability density function
conditioned on the observation equation. We numerically solve aZakai equation corre-
sponding to a hybrid loop previously proposed to track acombined suppressed/residual
carrier signal. Motivated by questions regarding the performance of phase-locked loops
in the stcmdy-state, wc consider the existence of a time-independent equation, whose
solution is the steady-state probability density function(PDF) of the system condi-
tioned on the state (equilibrium point) which the system is locked on. Our approach
is based on a deterministic approximation to the behavior of a particular Zakai equa-
tion in the steady-state. In particular, wc show that asymptotic of the Zakai equation
(given that the state is continuously locked) can be approximated by an infinite dimen-
sional eigenvalue problem, where the eigenvalue is a random perturbation of zero and
the eigenfunction is the approximate PDI* conditioned on the locked state. A detailed
analysis of this eigenvalue problem and a numerical procedure for approximating the
desired conditional PDY are shown. Numerical iesults for the hybrid loop indicate
that the solutions to the cigenvalue problem agree with those obtained by numerical
integration of the Zakai equation.




1 Introduction

Carrier synchronization loops arc often employed in coherent communications to provide a
phase-lockccl reference in thereceiver. Some of the loops, such as the onc described in [1]
to demodulate Quadrature Amplituded Shift Keyed (QASK)signals, exhibit multiple stable
lock points. Another example is the hybrid carrier and modulation tracking loop which is
used totrace a combination of suppressed and residual carrier modulation [2]. The latter
estimates the incoming phase using a weighted sum of the cstimates provided by a Phase
Locked loop (1'1,1,) and a Costas loop to enhance the overall performance and take advantage
of the total reccived power, be it in the tone or the data sidebands. In the analysis of such
loops, it is often assumed that the loop locks at zero phase error and no consideration is
given to the other lock points. The primary rcasonbeing that the theory to tackle the
analysis of stochastic systems with multiple lock points is not mature tothe point where the
conditional phase error density (conditioned on a specific lock point) can be derived. The
Fokker-Planck equation (FPE) provides only the combined density but not the conditional
densities, which arc nceded for a detailed analysis of the probability of bil error and the

mean-squared phase error performance (phase filter) taking into account the various lock

points and their respective probabilities.

The fundamental issue to be addressed in this paper is as follows: Given a stochastic
differential equation (SDE) whose deterministic part has multiple asymptotically stable equi-
libria, dots there exist a decomposition of the solution to its associated 'YL into a weighted
sum of conditional probability density functions (PD}'), where cach PDY is conditioned on
the event that thestate is in a neighborhood of one of the equilibrium points? If this decom-
postion is possible, then the weights represent the probability thatthe solution to the SDI)
in steady state is in a neighborhood of the corresponding equilibrium point. Our approach
to this general question is based on numerical integration of the Zakai equation [3]-[4]. Given
a set of observations of the state, the Zakaiequation provides us with the PDI" of the state
conditioned on the observations. At lcast numerically, the answer to the above question is
yes. in the case of certain carrier synchronization loopssuch as those mentioned above, it is

known that the phase in steady-state will lock at onc of severa possible states. Motivated




by questions regarding the performance of the loop in steady-state, wc will consider the exis-
tence of a time-independent equation, whose solution is the PDY of the phase in steady-state
conditioned on the state which the phase is locked on. Our approach to the second question

is based on a deterministic approximationto a particular Zakai equation in steady-state.

The remainder of this paper proceeds as follows. Iiisection 2, we summarize some basic
results on the Zakai equation and its relation to the Forward Kolmogorov Equation (FK1).
Wec will also discuss a numerical approximationscheme for the Zakai equation which will be
used in the subsequent. numecrical results. The theory is then applicdto the previously men-
tioned hybrid loop, which has two stable cquilibrium points. We will constructa sequence of
observations of the phase while it is locked in cach of the cquilibrium positions. Using each
sequence of observations separately, wc numerically integrate the Zakai equation to obtain
two PDI's which are conditioned on the locked state. Wc then show that the numerical
solution to the I'PF (the steady state 'KE) decomposes into a weighted average of the two
conditional PDFs. In section 3, We will show that the asymptotic of the Zakai equation
(given that the state is continuously locked) can beapproximated by an infinite dimensional
cigenvalue problem, where the cigenvalue is a randoin perturbation of zero and the cigen-
function is the approximate PDY conditioned on the locked state. A numerical procedure
for approximating the desired conditional PD]" is shown along with numerica results for the

hybrid loop.

2 Basic introduction to the Zakai equation

In this paper wc arc primarily interested in stochastic differential equations of the form
$(1) = J(#) +n(t), #(0) = o, (1)

where ¢(1) is a vector in R?, (d-dimensional Kuclidean space), f(+) is a bounded continuous
function from 7¢% into I-id, and n(t) is a white noise vector in J2¢with power spectral matrix
@.The initial condition ¢ is assumed to have a known PDI* I%(¢). 1t is well-known that

the PDI* P(¢,1) of the process ¢(?) is the unique solution to the classical FKI¢ [5]
g
a])(‘f)at) =LP (d’at)a (2)
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where I is the Fokker-Planck operator given by
I —

LP(9,1) LZ {;m >,, 5 HOP(6.0), ©
where ¢ij is the (7,7) clement of the matrix QQ7, and fi(#) is the ¢ component of the
vector f(¢). Ilquation (2) is posed with the condition that the solution be integrable on 72¢.
Suppose now that the process ¢(1) is being observed. lctthe observation process z(1)be
given by

2() = h(d) +v(1), @
where () and its derivatives arc bounded continuous functions from ¢ to k¥, and v(?) is a
} 7-valued white noise process indcpendent of n(t) and ¢o. Without loss of generality, wc may
assume that v(t) has unit power spectral density. We seek a conditional PDI® for the process
#(1) conditioned on the observation process {z(s) :0< s <t}.This conditional PDI" is the
unique solution of the Zakai equation, which is formally stated below. A detailed treatment
of the Zakai equation can be found in [3]-[4]. Intuilively, wc expect the Zakai equation to be
a stochastic generalization of the IFKIisinceit depends on therandom observation process
z(t). in fact, the Zakai equation is a linear stochastic partial differential equation (PDI)
with multiplicative noise. Solvability theory for such equations cannot be treated within
the framework of the deterministic theory of PDE’s. Rather, proper and rigorous t reatment
of the Zakai equation must be done within the context of lto Calculus [5]- [7]. Some basic

results from Ito Calculus arc presentedin Appendix A.

Following the t{rcatment in Appendix A, let J3(1) be a Brownian motion process. Wc

rewrite the state equation (1) and observation equation (4) in Ito form (scc Appendix A)
dé(t) = f(p)dt + dB(1) , dY (1) = h(¢)dt -t- dV (1), 5)

where dY (1) = z(1) dt, and V(1) is a Brownian motion process independent of 13(t) and o-
For notational simplicity only, we assume that both /3(1) and V(t) have unit power spectral
matrices. The unnormalized conditional PDI® of ¢(1) conditioned onthe observation process
Y ({) up to time {, which will be denoted simply as I’(¢,1), is the unique solution to the

Zakai cquation

dP(¢,1) = LP(¢,0)dt + P($, )0 ($)dY (1), P($,0) = I'o(4). (6)




A derivation of the Zakai equation is sketched in Appendix B. The Zakai equation is typically

integrated numerically with possibly discrete observations. Here, we will bricfly mention the

Splitting-up method, which is explained in [4]. Wc assume a discrcte observation process of

the form
z(n) = h(¢(n)) + v(n), (7)

where v(n) is white noise with unit power spectral matrix. IFirst,we usc a uniformly spaced
finite-diffcmncc scheme on a finite grid to discretize the spatial domain. Wc obtain a system

of stochastic differential equations of the form
dP(t) = LiP()dt 4 By P(0)dY (1), (8)

where P(1) = (P'(1), . ..PN (1)) with Pi(t) denoting the conditional PDY at the grid point i,
L, is the matrix representation of the discretized operator 1., and /3, is a diagonal matrix
with h(¢:) inits diagonal. The splitting-up algorithin (using anluler backwards scheme)

for the numerical integration of the finite dimensional Zakaiecquation(8) is given by
(I — At Lp)Puyy = V1 Py (9)

where P’(n) = P(1,), and ¥ny1 is a diagonal matrix with elements

A

i = exp (G (etn 4 1) 4 m)h(8) - 5 (@) (lo)

and At is the step size for the Euler scheme. Equations (9)- (1 O) arc similar to the genera]
solution of a onc-dimensional | to equation (scc Appendix A). Yor a hybrid loop [2], f(¢)
takes the form f(¢) = —asin(¢) — B sin(2¢). Wc used the Splitting-up scheme to integrate
the Zakai equation (6) corresponding to this loop, which is governed by the SDE

d¢(l) = —a sin(¢) di - B sin(2¢) dt + dI3(1),
with the discrete observation process
z(n) = cos(¢(n)) + v(n).

This problem was solved on the interval [--n, x] with periodic boundary conditions and

with « = 0.2, and # = 1.0. Wc used spatial resolution Ah ==x/16and temporal resolution
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At = 0.01. The hybrid loop has two points at which the phase locks (i.e., the system has two
asymptotically stable cquilibria), ¢ == O and ¢ = . ‘There is another unstable cquilibrium
point belween the two stable ones whose location is determined by evand 3. To simulate the
process of phase locking, wc initialized the system (and thus the observation process) near
the cquilibria. The initial distribution for the Zakai equation was centered near /2. in Fig.1,
wc show the solutions of the Zakal equation at {= 5000 (i.e., in steady-state) conditioned
on the locked points. Also in Fig.], wc show the solution to the I'K1i for the same initial
conditions and same time. Again, the solution to the IFKISrcaches a steady-state. Using a

least squares method, wc solved for two constants ¢; and ¢y such that
P(¢) = c1 Po(8) + e (), (11)

where P(¢), To(¢), and I’;(¢) arc the steady state numerical solutions to the IFKI, the
Zakai equation locked at ¢ = O, and the Zakai equation locked at ¢ = n- respectively.
By Bayes theorem, c,and c; arc the probabilities that the phase in steady state locks at
¢= O and ¢ = 7 respectively. Using the least squares values for ¢; and C,, wc formed
P(¢) = 1 Po(®) + c2Px(¢). (¢) is also shown in Fig.]. Comparing P(¢) with P(4), we
can sec that the solution to the 'KI decomposes into a weighted sum of the two conditional
PDY¥s obtained by solving the Zakai equation. in principle, wc can obtain c,and C,by
evaluating equation (1 1 ) at any two fixed values of ¢.However,since the conditional PDI's

were obtained numerically, wc used a least squares solution, which scemsto be very accurate.

3 Decomposition of the steady-state PDF into a weighted
sum of conditional PDF's

The numerical integration results in the previous scction showed that the Zakai equation can
track the PLI system asit becomes locked at one of the equilibriuin points. We also showed
through numerical integration that for a fixed time (large enough tobc considered in steady -
stale) the solution of the I'K1S cau be decomposed into the weighted sum of two solutions of
the Zakal equation. There arc two issues which wc will now address. First, the solutions to
the Zakai equation depended on the observation process, which is onc particular realization of

the process ¢(t) with additive observation noise. Sccond, in practical applications, wc would
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like to obtain a stcacly-state decomposition without having to integrate forward in time. ‘1'bus,
wc seek a decomposition of the IFP’I9 similar to that given for the I'K} | and wc would like to
obtain the steady-state conditional PDI's directly by solving a time-independent equation.
Our approach willbe general. Thalis, we consider stochastic dynamical systems whose
deterministic part has a finite number of asymptotically stable equilibrium states, and wc
will address the notion of a steady-state conditional PDI’, where wc condition on the event

that the state is in a neighborhood of an equilibrium point.

In the limit as the random perturbations go to zero, the stochastic system behaves like a
deterministic onc [5]. in this case, the steady-state Pl )} approaches a sequence of impulses
centered at the equilibrium points. When the noise variance becomes relatively large, the
solution tothe dynamical system jumps from one equilibrium state to another. The corre-
sponding steady-state PDF approaches that of a uniform random variable. Most physical
systems lic somewhere in between the two extremes, and in general the solution to the IFPE
has relative maxima at the cquilibrium states corresponding to the deterministic part. in
principle, even if the noise variance is very small,the expected transition time from one
cquilibruim state to another is finite. However, if this expected transition time among equi-
librium states is large enough, such as in the case of t he hybrid loop, then we may refer to
a conditional steady-state PD}, conditioned on the event that in steady-state the system is

in a neighborhood of a specific equilibrium point.

For simplicity only, we consider scalar systems. More formally, consider the SDI in It!

given by
dé(t) = [(¢)dt + dBs(1), (12)

where the Wiener process dB(t) has unit power spectr a density. We assume that the corre-
sponding deterministic system has m asymptotically stable equilibrium points {e, ....cm}.
That is, f(ex) = O and f’(ex) <0 for k = 1,..., m.Let P(¢) be the solution to the associ-
ated FPE LP = O. In steady-state, wc assume that the expected transition time from one
neighborhood of a stable equilibrium point to another is large enough such that the notion
of a steady-state conditional PD} has physical recalling. In this case, we may define the

function Px(¢)= P(¢|¢ € N(ck)), where N(ey) is a neighborhood of ex. As a result, there
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exist constants ¢y, . ... ¢, such that

m

P(g) =73 ali(¢), (13)
k=1

where ¢ isthe probability of being in N(cx) in steady-state. Our immediale aim is to obtain
an approximate clliptic partial differential equation for I’(¢#). 7o this end, consider the
obscrvation process defined by (7). The corresponding difference equation for the conditional

PDF (with the dependence on k' suppressed) is given by (9).

Let us assume that for some nsufliciently large, we observe the system in N(eg) (i.e. the

phase is locked atl the point ¢;). ‘Jbus, wec may usc theapproximation
d(n) =cp + &€(n),  2(n) = h(ex + €(n)) + v(n),

where £(n) is a random deviation of the state from the locked position, and v(n) is the
sequence of measurement noi sc, assumed to be an idd sequence. in particular, the variance of
the measurement noise is assumed to be of the order A (-t) (o(At)) uniformly in n. Expanding

the observation process about £(n) we obtain
Z(2 + 1) + z(n) = 2h(ex) + 1'(ex) ({(n) +&(m+1))+v(n-17 1) +o(n)+ o(fz(n))

which implies that

%1(2(71 +1) 4+ z(n)) = At h(g)+ An, (14)

where

M= S (WY€) + €6 1)) 4 vl 4 1) + 0(n)) -t o Até(n)),

In the cnsuing analysis we will be intcrested inthe asymptotic. behavior of the secquence Ay,.

In particular, wc assume that A, satisfies

lim Var (X)) = o,

11 —00

where Var (-) denotes variance, and ¢ is a constant, which is o(At).To this end, we note that
A, depends on two random variables, £(n)and v(n). The i id mcasurement noise sequence
v(n) is assumed to havea corresponding bounded scquence of variances, where the bound

is uniform in n. Theother random sequence is £(n), which is a small deviation from an




cquilibrium point. If we consider £(n) as a sampling at time {,, of the continuous process

£(1),and if wc assume that being locked at an equilibrium point ¢xin stcacly-state implies
that #(£7(1)) is negligible for some » > 0 and for arbitrarily large, and if wc assume that

fisr-1 times differentiable, then £(t) satisfies the SDE

dg(t) = f ! (":7){(‘—0-&)-5"‘(0(11, +dB(1),

where f0™)(.) denotes the m* derivalive of f(+). The steady-state PDY of £(2) exists and
can be obtained by solving the associated I'PE. Wcdenote this distribution by g*(¢). ‘1'bus,
if g(¢,1) is the PDF of £(1), then

t]im #*g(p, 1) = ¢Fg*(¢), for all ¢ R, and k=1,2.

( recall that g(¢,t) and ¢g*(¢) have compact support on 1?). ‘1’bus, By the Dominated

Convergence Theorem [8], we have

lim [ #ha(o,0) = [ #7(e), k=12,

which implies that the sequence of variances of (i) convergences to a finite constant as i
approches infinity. As a result, if for n arbitrarily large the system remains locked at the
equilibrium point €k, then A, (in steady state) convergesto arandom variable A with variance
o(At). Note that other arguments can be made which do not require any smoothness on the

function f.

Substituting (14) into (10) and expanding the exponential term we obtain

b= oxp (AL RCOR) — S(4)) (1 + o(AD),

As a result, wc approximate the diflerence equation for 72, by
(1 -At L) Poy1= AP, -+ N AP, (15)

where A is a diagonal matrix with diagonal entries

exp (At h(er)h(s) - %i h2(<f’i))



By letting n approach infinity in equation (1 5), wesce that the existence of a stcady state

conditional PDF is equivalent to the statement that the following cquation has a solution:
(1 — AL L) P == (A4 AA)P,

wherc A is a random variable with o(At)variance. From this we finally obtain the steady-
state conditional PDF
A--l (1—=AtL,--A)P =)D (16)

in principal, the cigenvalue A corresponding to the cigenvector I’ is not known, except wc
do know it has a variance which is o(At). Fox the PI .I.example of section 2, wc examined
the ecigenvalues of the matrix A=1(J] — At 1, — A) for different choices of a and S and for
At in the range 0.0001 <A{< 1.0. Wcfound that the magnitude of the smallest cigenvaluc
is always o(At). We also found that this eigenvalue is always negative. In fact, cigenvectors
corresponding to positive o( At) eigenvalues sometimes had negative components. Also, in
our numerical experiments, we found that the numerical solutions to equation (16) were not
sensitive to Al.Yor the purpose of analysis, wc may set Ai:==1, even though in general At

may play an important role in the numerical solutions. The steady-state equation becomes
(A= = A7 L = 1) P = AP, (17)

where Al=1in the diagonal components of A.

in Fig.2, wc show the normalized solutions to equation (17) for A(¢)= cos(4), and A set to
the negative cigenvalue with smallest magnitude. The results are compared to the solutions
to the Zakai equation which were obtained in section 2. The results suggest that the resulting
cigenvalue problemis a good steady-state approximation to the condtional PDIY of the phase
#(t), conditioned on the state at which the phase is locked. ‘I’his provides us with a possible
way to compute /’. The fact that wc chose Ato be the negative cigenvalue with smallest
magnitude canbec justified in the following way. First, wc know that its variance is o(At).
The fact that it should be negative can be explained by examining the infinite dimensional

analoguc of equation (1 7), which is given by the elliptic partial differential equation

9(d ) LP(d)+ (1 + A g(é, ) P(9) - 0, (18)
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where 1. is the Fokker-Planck operator defined in equation (3), and

(s i) =oxp (52(8) — Meh(®)) (19)

Equation (18) can be posed on a periodic domain or on a large but finitc domain with zero
boundary conditions (i.e., since the solution is a PDI, it can be approximated by a function
with compact support). It is well-known from the theory of partial diflcrential equations
that a unique solution to equation (18) exists if zero is an cigenvalue of the elliptic operator
D=g(¢)L +(1+A—g(¢)).On the other hand, wc may also view the solution of (18) as the
asymptotic limit of the solution to the equation f’(t,¢):])]’(t,d»).]“or the latter cquation
to have a classical solution in steady-state, it is required that the rate of change of the energy
;;%I]’(t)li?(m be nonpositive. This is equivalent to to the condition < DP, P>p2()< O for
al I’in C2(9) (twice-differentiable functions with compact support on a bounded domain

1), where < -,+ >;2(qy denotes the 1? innerproduct over 2. Note that
< ])]), r >1/2(Q):< g(gﬁ, Ck)]/]), P >L?(Q) » < (A + 1 g(d), Ck))]), r >112(Q) .

Since g(¢,cx) is nonnegative and the Fokker- Planck operator is dissipative (otherwise the
solution of P(t)= I P(t) would not have a finite limit in steady-state), then a sufficient
condition for the dissipitivity of the operator ) is that A +1-— g(¢, ¢;) be nonpositive. To
illustrate this condition, consider the example of thehybrid loop of section 2. A plot of
g(¢, c) with h(#) = cos(¢) is shown in Fig.3. We can scc that 1 -- ¢g(¢,cx) can be slightly
positive for both equilibrium points ¢;== O and C,=#. If A is, say, less than -0.5, then D is
guaranteed to bca dissipative operator. This is only a suflicient condition, but it illustrates

the problem that can occur if A is positive.

Although our analysis has been in the context of the hybrid loop example of section 2 with
h(¢) = cos(¢), the same results can be generalized to higher dimensions and to any bounded
function h(¢).The choice for h(¢$) only affects the unnormalized PDI. By examining ¢(¢,cx),
wc sce that this is a parabolic function of h($) which attains onc minimum at h(e,) and
grows exponentially as ¢ moves away from ¢, (sce Fig.3). As aresull, we can make scveral
more conclusions regarding cquation (18), whose solution wec will now cal the (unormalized)

steady-state conditional PDI" (conditioned on the equilibruim state). In particular, equation

1




(1 8)canbe viewed as a generalization of the Fokker-Planck equation. The first term in
equation (18) is given by

d

b, €k )i 0?
(L) = 35 OO pg) gt (HOP@).

i=1 j=1
Since g((fk, Ck) <<1 and g(d), ck) >1 for (f) away from Chy the diffusion cocflicient (C()cm(jiC“L
of the Laplacian), which is proportional tothe power spectral matrix of the stochastic per-

turbation, is attcnuated near ¢k and magnified away fi om ¢x. Expanding the second part of

9(¢yer)1.P(4), we obtain

$° (406, c0 2P + e, @50 (9) = 0 v NP+ (0) TP 20)
The cocflicient of I’(¢), which is g div f, is caled the growth coefficient. If it is positive,
then it shifts the real part of the cigenvalues of the diffusion to the right (indicating growth
in the solutions) and if it is negative if shifts the real part of the diffusion eigenvalues to the
left, which introduces damping to the solutions. Near the stable equilibria, the Jacobian of
/ must have negative cigenvalues, which implies that div f <0 (the trace of the Jacobian
of f is equa to div f). ‘1’bus, multiplying div f by 9(¢ex) will magnify the damping of the
solutions away from ¢k and attenuate the damping near ¢k- The advection coefficient (i.e.
the cocflicient of VP?) affects the rate at which initial conditions in an evolution equation
arc propagated. Its relative effect on the solutions near the stable equilibria is secondary
since f is close to zero in these regions, In general, multiplying the Fokker-Planck operator
by ¢(&, ex) tends to make the corresponding solutions exhibit narrower peaks near ¢k and be
more flat away from ci.In particular, the relative maxima near ot her equilibrium points in
the solutions of the IFP}. become flatter and closer to zero. The dissipation of the solution

near the other equilibria is magnificd due to the second term in equation (18). This term is

(A + 1 g(¢, ex)) P’

which ecssentially acts as another dissipation term, with the dissipation magnified away from
¢k (where g(¢, ¢x) is maximum) and negligible near ¢x. Again, solutions to equation (18)
exhibit further decay as wc move away from e, particularly ncart he other equilibria. g’ bus,

the qualitative form of equation (18) matches the physical behavior which onc expects from
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a conditional PDI. In particular, numerical solutions to equation (18) agree with those
of the Zakai equation. llowecver, equation (18) was derived from asymptotic analysis of a
particular approximation scheme of the Zakaicquationin steady-stalm. IHowever, if we had
used a forward Kuler scheme to discretize the Zakai equation, our asymptotic analysis would
have resulted incquation (18) aswell. Wc expect that any spatial discretization scheme for
the Zakai equation would yield an approximation to (18) inthelimit as time approaches
infinity.

I'inally, once wc have obtained k() by solving equation (1 8) using the numerical ggo-
rithm in this section, wc may solve for the coefficients ci by solving the FPE for F’(¢) and
by cvalualing equation (13) at m distinct points ¢i- 1f we combine the results of Fig.1 and
Fig.2, wc can conclude that the constants cxobtained numerically using the solutionstothe

Zakai equation (sccscction 2) would be the same obtained using instead the the solutions

to (18).

4 Conclusion

In this paper wc investigated the behavior of nonlincaistochastic systems in a neighborhood
of a stable equilibrium point. Wc derived a timc-independent equation for the conditional
PDF of the state conditioned on a given stable equilibrium point,. Wc further established
the methodology using a hybrid synchronization loop. Theresultsin this paper continuc to
hold in the case of multiplicative noise with only minor modifications to the Fokker-Planck
equation. in particular, the asymptotic analysis of the Zakaiequationremains essentially

unch angcd.
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Appendix A
Basic results from Ito Calculus

Wc begin with a formal definition of a probability spat.c. Consider an experiment /
whose outcomes arc clements of a sample space ). Let F beasigma-ficld (set of al possible
sets) of observable events, and let P be a probability 1 ncasure defined on the sets of F. Wc
can think of P as an abstracl representation of a distribution function /' characterizing the
experiment F. The probability space associated with the experiment J2 will be denoted by
(Q, F,P).Yor the same experiment J5, wc may define another probability space, (2, F,P1),
which is related to the original space by the relation dF'(z)=: p(z)di'(z), where F'* is the
distribution function associated with P*, and p is caled the Radon-Nykodym derivative of
P with respect to P*. Roughly speaking, switching from onec probability space to another

amounts to making a change of variables. For example, for any set in A € F, wc have
[Chung]

P(A) = /A dI'(z) = /A p(@)dlH(z), P*(A):: /A I (z) = /A p~ (2)d I (z).

]n order todcfine a stochastic differential equation, we would typically needa time-dependent
probability space of the form (§2, F;,P). For example, let I3(t) be a Brownian motion
such that dI3(t)=n(t) dt, where n(t) is a white noise process [ ]. Wc may let F;be
the sigma-field generated by the trajectory of B(s) up to time?. Symbolically, wc write
Fi =0 (B(s) :0 <s<Ht). In this case, a function will be caled Fi-measurable if it is a
function of the trajectory B3(1).¥or such functions, wc define the Ito integral as follows: Let
(to, 11, . ... t,)be a partition of the interval [0, ] where {/n =) - ;3. Then the Ito integral
of a Fi-mecasurable function ¢(t) is defined as
‘ n—l
[ a()ans(s) = Jim, 2 (1) (1) = B(1), (A])
whenever the summation converges in the mean-square-sense. W cnote here that the limit
of the sum depends on the fact that g(s) is sampled at i (as opposed to anywhere in the
interval [tg, tk41))- This differs from the usual definition of recall-square convergence, where

the limit dots not depend on where g(s) is sampled. For a discussion on this subject, scc [
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]. ¥or I3(1) as above, we may define the stochastic integral equation

(1) = o + [; F(#(s))ds A ))dB(s (A.2)

where the first integral is defined asa mean-square Riemann Stieltjesintegral in the usual
sense [ ], and the second integral is an Ito integral in the sense of equation (A. ] ). Symbolically,

the integral equation is writen as a differential] equation inthelto form
dg(t) = [(#)dt + g(¢)dB(l), ¢(0) = do. - (A3)

If f(¢)= Sfo(t)¢() (i.e. f(4#) is linear in ¢) and g(¢):= go#(!) where go is constant, then in

onc dimension the general solution to (A .2) is given by
$(t) = o exp (/ f(s)ds+ 9o B(1) _$ ) (A4)

An important result in Ito Calculus is Ito’s Lemma. in one-dimension, it states that if « is

a smooth function of ¢,then

Ou(¢)
KZR

Equation (A .3) can be gencralized to stochastic systems in /¢™, where it is often cxpressed

g4 Pu(é)

du(‘ﬁ(t)) - 9 aqz)g

de(t) + (A.5)

as as
du(¢(1)) = Lu(¢()dL, (A.6)

where L* is the adjoint of the Yokker-Planck operator with respect to the I2(R™)inner-
product. An important corollary of Ito’slemina isthe product rule for two solutions to Ito

differential equations. l.ct a(t) and y(t) satisfy
dz(t) = fi(x)dt+ gi(x)dBi (1), dy(?) = f2(y)dl - g2(y)dBa(1),

where I3 (1) and B2(1) arc independent Brownian motion processes. Let 2(t) = x(2)y(1).

Then z(1) satisfics the Ito differential equation

dz(1) = a()dy(t) + y(1)dz(t).




Appendix B
Summary of the Zakail equation

Following the trecatment in the Appendix A, let (2, F,P)be a probability space, let
B(1) be aBrownian motion process, and let 7;be the sigma -ficld generated by the process
B(t). We assume that F;c F for each i. On (§2, .2, T'), wc consider the state equation and

observation equation in Jto form
do(t) = [(@)dt +dB(t) , dY({)=h(¢)dt + dV (1), (B.1)

where V(1) is a Brownian motion process independent of 13(1) and ¢o- For notational sim-
plicity only, wc assume that both 13(t) and V(1) have unit covariances.It is assumed that )i,
the sigma-ficld gencrated by the process Y(1) up to tiine?, is contained in F:. Our am is to
sketch the derivation of the Zakai equation, whose solution is P’(¢,1|};), the unnormalized
conditional PDI of ¢() conditioned on the observation process Y (1) up to time {. We will
denote this function simply as’(¢,1). Thus, for any infinitely differentiable test function

u(#), we have
B ((@@)Y) = [ u(@)7(6,1)dé (13.2)

To obtain the desired equation, we begin by introducing a ncw probability space (2, F, P*)
such that under P*, the state process is statistically unchanged, but Y (1) becomes a Wiener
process independent of I3(1). The now space is related to the original space by the relation
(scc Appendix A) dI'(¢)==p(¢,1)dI"* (), where I and F'* arc the associated distribution
functions, and p(¢,1) is the Radon-Nikodym derivative of P with respect to Pt given by

p(¢, 1) = exp (/Ot W (4(s))dY (s) -- 12 /Ot |h(¢(s))|2dY(s)) . (B.3)
In particular, for any test function u(¢), wc have the following relation:
¢ ¥ (u(@(O)p($ V) = B (u(@@)IV) = [ u(6)P(4,1)de, (13.4)

where ¢ isa normalization constant. Using lto’s lemma (sce Appendix A), it can be shown

that p(¢,1) satisfies the equation

dp($,1) = plé, AT (S(1))AY (1). (13.5)

16




Also by Ito’s Lemma, u(¢(t)) satisfies the stochastic differential equation
du(¢(t)) = L*u(¢p(1)) 4 di3(1),

where I1* is the adjoint of the Fokker-Planck operator L with respect to the L2(1R™ ) in-
nerproduct (sce Appendix A). On the space (Q,F,P%),Y (1) is a Wiener process. ‘1’ bus,
cquation (B.5) is an Ito differential equation for p(¢,t). On the other hand, since Y (1) is
independent of 13(t), we may apply the product, rule (scc Appendix A) to obtain a differential
equation for d(p(¢,1)u(¢(1)). This is perhaps onc of the most crucial steps in the derivation
(sce [ ]). It was facilitated by the fact that on (£, F,P%),Y () and I3(t) are indcpcndent
Wiener processes. This motivates why wc use this probability space instead of the original

one. After expressing the differential equation for d(p(¢,1)u(¢()) in integra form, wc apply
Is¥(-|);) to obtain

Y (60l D120 = B (uldolp(sh0)) 4 [ BTl Dlp (6(s), V) ds  (156)
[ (W s))p(d()10) 4 (o)
Using the equality in equation (11.4), wc can sce that equation (B.6) is equivalent to

1
< Pg,1),u >=< P(¢,0),u > +]0 < P(¢,s),L™u > ds (B.7)

koot
+‘;A < hi($)P (¢, 5),u > dYi(s),

where < -,. > denotes the 12(12¢) inncrproduct. Finally, equation (1B.7) is the variational

form of the Zakai equation

dP(¢, 1) = LP(¢, 0)dt + P(p, )T ($)dY (1),  P(9, O) = Po(¢), (1.8)

where I, is the Fokker-Planck operator given in (3) of section 1. Note that if there arc no
observations, thenY (1) is zero and the Zakaicquationreducesto the Forward Kolmogorov

equation.
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